
kboot_sl Linux System Loader Description

Michael Löhr and Swen Schillig

$Id: description.lyx,v 1.1.2.1 2006/06/27 14:41:41 loehr Exp $

1

Contents

1 Overview 4

2 Description 4

3 Building system loader executables 5

3.1 The kboot Build Environment . 5

3.2 RPM Package Build . 5

3.3 System Loader Standalone Build . 5

4 Installation 5

5 Boot Methods 6

6 Elements of the Config File 6

6.1 Global Definitions . 6

6.1.1 Comments . 7

6.1.2 default . 7

6.1.3 timeout . 7

6.1.4 password . 7

6.1.5 userinterface . 7

6.1.6 userinterface linemode . 8

6.1.7 userinterface ssh . 8

6.1.8 include . 8

6.2 Setup Commands . 9

6.2.1 setup module . 9

6.2.2 setup network . 9

6.2.3 setup qeth . 10

6.2.4 setup dasd . 10

6.2.5 setup zfcp . 11

6.3 System Dependent Sections . 11

6.3.1 mac . 12

6.3.2 uuid . 12

6.3.3 lpar . 12

6.3.4 vmguest . 12

6.4 Boot Entry Definitions . 13

6.4.1 title . 13

6.4.2 label . 13

2

6.4.3 root . 13

6.4.4 kernel . 14

6.4.5 initrd . 14

6.4.6 cmdline . 14

6.4.7 parmfile . 14

6.4.8 lock . 14

6.4.9 pause . 15

6.4.10 insfile . 15

6.4.11 bootmap . 15

6.4.12 halt . 15

6.4.13 reboot . 15

6.4.14 shell . 15

6.5 URI Definitions . 15

6.5.1 block . 16

6.5.2 ftp . 16

6.5.3 http . 16

6.5.4 scp . 17

6.5.5 file . 17

6.5.6 dasd . 17

6.5.7 zfcp . 17

6.5.8 dasd URI for the bootmap command . 18

6.5.9 zfcp URI for the bootmap command . 18

7 Using the Command Line Interface 18

8 The kboot_admin Tool 20

9 Using Online Documentation 21

10 Extending the System Loader 21

A Examples 22

A.1 menu.lst to Start the System Loader via grub . 22

A.2 Simple kboot.conf for i386 . 22

A.3 An Example Using Advanced Configuration Features . 23

A.3.1 zipl.conf on System 1 . 23

A.3.2 zipl.conf on System 2 . 24

A.3.3 System Loader Configuration Used by Both Systems 24

3

1 Overview

This document describes the installation and configuration of the system loader. All features and options
of the system loader configuration are explained in detail. In addition, the usage of the user interface is
outlined and example configurations are provided in the appendix.

2 Description

As an extension of the kboot project by Werner Almesberger (kboot homepage http://kboot.
sourceforge.net/) the system loader runs in a minimal Linux environment started by a platform spe-
cific first stage boot loader. At the start a configuration file is read, the setup is performed according to the
configuration data and finally the boot selection menu is displayed. Based on the users selection, a boot
configuration is loaded and the system is reinitialized via the kexec system call. As the result the minimal
Linux system is replaced by the system selected in the boot configuration.

Up to this level of description kboot and kboot_sl, as the system loader extension will be called in
the following text, offer similar functionality. From a more detailed view kboot_sl has been optimized
for a different goal than the original kboot environment. The original kboot tries to provide a compact
and minimal Linux boot system that will be built and customized for the target machine and application.
kboot_sl tries to offer a more generic and feature rich Linux boot environment that can be provided in a
ready to use form, e.g. as a rpm-package but gives up the goal to provide a very small boot environment.1

kboot_sl can be seen in the following ways:

1. As a comfortable boot loader for systems that offer only a frugal first stage boot loader:

From this point of view kboot_sl solves the problem that some boot loaders have to be reinitialized
whenever a component of the boot configuration changes. Examples for this type of boot loaders
are lilo on the i386 platform or zipl on the s390 platform. With kboot_sl these boot loaders will
be initialized only once to start kboot_sl. Any further changes to the boot configuration will be
handled dynamically by kboot_sl. A potentially uncomfortable boot menu like in the case of the
zipl boot loader is replaced by the more convenient boot selection menu of kboot_sl.

2. As a boot loader that can be controlled from remote via the network:

Usual boot managers offer their boot seletion menu on the local console of the system to be booted.
Therefore it is necessary to walk to the machine or to connect with a special terminal software if
anything different than the default configuration has to be booted. With kboot_sl a standard ssh
interface allows remote connections while a system is still in its boot phase.

3. As a boot loader that supports boot configurations to be centralized and managed on the network:

Typical boot loaders have to be configured locally on the system to be booted. If kernel parameters or
the kernel itself have to be changed on several systems an administrator has to login to all systems in
order to change the settings or install the kernel. kboot_sl’s ability to access remote files through a
network connection together with a mechanism that can handle system specific configurations is the
basis to consolidate the boot configuration for several systems. Boot parameters, kernels, ramdisks,
etc. can be provided by a centralized boot server. Especially in virtualization or cluster environments
with many similar systems this allows to manage and change boot configurations very efficiently.
The approach helps also to distribute new kernel versions with important bug fixes fast and keeps all
systems booting from the same boot server in a consistent state.

1Dennis Merbach was so friendly to host our collected Linux system loader patches at http://www.merbach.net/kboot_sl/.
Future additions and extensions may also appear on this site.

4

http://kboot.sourceforge.net/
http://kboot.sourceforge.net/
http://www.merbach.net/kboot_sl/

4. As a rescue system that is always available in the boot sequence:

If the boot of a Linux system fails, a Linux rescue system that allows to fix the problem is quite
useful. On a system that uses kboot_sl as its boot manager there is already a rescue system installed.
From the shell environment of kboot_sl the problem that prevents the system from booting can be
analyzed and fixed. As soon as the problem is solved the system can be booted into normal operation
again. Special tools and requirements for a customized rescue system can be easily integrated into
the kboot_sl ramdisk via the kboot_admin tool.

3 Building system loader executables

In most cases the end user of the system loader kboot_sl will use prebuilt components and has therefore
no need to build the system loader from scratch. If it is necessary to rebuild the system loader components
there are three possibilities.

3.1 The kboot Build Environment

The system loader is an extension to kboot and therefore integrated into the kboot build environment. As
a result the execution of the make command downloads and compiles all components required by kboot
and the system loader extension. Finally, make creates a system loader kernel and a ramdisk. This ramdisk
contains the kboot base environment and all system loader add-ons, which are detailed out further down
in this document. Additional information about the build environment can be found in the original kboot
documentation by Werner Almesberger.

3.2 RPM Package Build

This build option is only available on RPM based Linux distributions. Executing make redhat-rpm in the
kboot top level directory will first execute make in the kboot build environment and finally create source
and binary RPM packages of the system loader.

3.3 System Loader Standalone Build

It is possible to build the system loader as a stand-alone application without the kboot kernel and ramdisk
environment. Executing make install in the sub-directory kboot/ui is creating a stand-alone version of
the system loader. This version can be used for debugging or to initiate a fast menu controlled reboot of the
system. To ensure that the system loader will find all its components the environmant variable KBOOT_PATH
has to be set similar to the following example:

export KBOOT_PATH=/root/systemloader/kboot/ui/usr/kboot
/root/systemloader/kboot/ui/usr/kboot/kboot -u linemode file:///boot/kboot.conf

4 Installation

There are two ways to install the system loader, automatically via a RPM-package (on supported systems
only) or manually by copying the system loader kernel and ramdisk to the /boot directory. In both cases
the system loader is not activated automatically.

Instead of using the kernel provided with the kboot package it is also possible to use any other kernel
available on the system. However, the kernel must be at least version 2.6.13 and the kexec system call has

5

to be supported. In the simplest scenario all required drivers (e.g. disk or network drivers) are compiled
into the kernel. For more flexibility the kboot_admin tool (see section 8) allows to create and modify
customized system loader ramdisks with module support. Kernels and ramdisks are different for 31/32-bit
and 64-bit systems and must not be mixed.

To enable the system loader it has to be configured as a boot entry of the first stage boot loader. On Intel
lilo or grub can be used, on s390/System z the system loader can be booted from the reader or use zipl
as the first stage loader. Any minimal first stage loader is sufficient because the system loader will handle
the boot selection menu and user interaction.

Before the system loader can be used, an appropriate configuration file has to be created. A detailed de-
scription of all elements of the system loader configuration file is given in section 6. Example configuration
files can be found in sections A.2 and A.3.3. When the system loader configuration file is available the sys-
tem loader kernel and initrd can be booted via the first stage boot loader. Sections A.1 and A.3.1 show
example configurations for grub and zipl.

kboot_sl will be started if the kernel command line contains the additional parameter kboot that specifies
the location of the configuration file. Otherwise the Werner Almesberger variant of the kboot environment
will be started without the system loader extension.

Example:

kboot=dasd://(0.0.5c5e,1)/boot/kboot.conf

5 Boot Methods

Depending on the hardware platform and the available disk types the system loader supports several boot
methods. On the i386 and s390 platform the system can be booted from a kernel image file. An initial
ramdisk and a kernel command line or parmfile can be specified together with this kernel file. On the s390
platform *.ins files or the boot map information written by zipl can be used in addition.

In any case the location of kernel, ramdisk, parmfile, insfile or boot map will be defined as an URI. Which
URI scheme has to be used depends on the system platform and available disk. The block URI is typically
used on the i386 platform. The dasd and zfcp URI schemes are specific for the s390 platform. On every
platform the ftp , http and scp URI schemes can be used to boot from the network.

All boot methods and URI schemes will be described in detail in the following chapter.

6 Elements of the Config File

The config file for kboot_sl consists of some global definitions which are followed by one or more boot
entries. External files are always referenced by an URI. A detailed description of supported URIs will be
given in section 6.5.

6.1 Global Definitions

Preceding the boot entries the system loader configuration file contains a number of definitions that are
valid for the whole configuration file.

6

6.1.1 Comments

Comments are allowed in the global definitions part of the configuration file and in the boot entries. A
comment starts with # and ends at the end of the line. Tabs or spaces in front of the # are possible but
comments at the end of a line that contains a definition are not allowed.

Example:

this is a comment
this is also a comment

<definition> # this is not allowed!

6.1.2 default

The default statement references the boot entry that will be selected automatically after the timeout. Valid
references are the label of a boot entry or a number. Implicit numbering of the boot entries starts with 0. If
the default statement is not used, entry number 0 will be used as the default.

Example:

default linux2
default 1

6.1.3 timeout

The timeout statement specifies the time in seconds until the default boot entry will be started automati-
cally. If the statement is not used or the timeout is set to 0 no timeout will occur.

Example:

timeout 15

6.1.4 password

The password statement defines the password that has to be entered if a locked boot entry (see section
6.4.8) has been selected.

Example:

password topsecret

6.1.5 userinterface

The userinterface statement specifies which userinterface module should be started to display the boot
selection menu. For every userinterface command a userinterface process will be started. This allows
to start several instances of the same userinterface module listening on different input devices or ports.
Additional options may be specified depending on the user interface module. Currently linemode and ssh
are available as user interface modules.

Syntax:

userinterface <ui_module_name> [MODULE_OPTIONS]

7

6.1.6 userinterface linemode

For the linemode interface it is required to specify the device on which the boot selection menu will be
displayed. Typical values for the device parameter are /dev/console , /dev/tty or /dev/tty1 .

Syntax:

userinterface linemode <device>

Example:

userinterface linemode /dev/tty1

6.1.7 userinterface ssh

The userinterface ssh statement will start a process that is listening for incoming ssh connections in the
background. For every incoming connection that is successfully established a new user interface instance
will be started. The type of interface to be started has to be specified as the first module option. Currently
only linemode can be specified here but for the future additional user interface types (e.g. ncurses) may
become available. Additional module options may be used to specify the port on which the ssh connection
can be established and to load RSA or DSS keys from a location defined by an URI scheme.

Connecting to the system loader via ssh will require a userid and password. During the creation of the sys-
tem loader ramdisk a user kboot with password kboot will be created automatically. The tool kboot_admin
allows to change the password on an existing ramdisk.

Syntax:

userinterface ssh <ui_module_name> [port=<portnumber>] [rsa_key=<key_uri>] [dss_key=<key_uri>]

Example:

userinterface ssh linemode port=2222

6.1.8 include

The include statement can be used anywhere in the system loader configuration file. The content of the
file referenced by the URI will be included at the position of the include statement. Nested includes are
allowed but limited to twenty levels. include statements that appear inside an inactive system section will
not be applied.

Syntax:

include URI

Example:

include dasd://(0.0.5c5e,1)/boot/extra_menu.conf

8

6.2 Setup Commands

This group of commands allows to setup additional devices in the minimal Linux environment of the system
loader. It is possible to load additional kernel modules, to specify network settings and to enable devices
that are not enabled automatically. Each setup command is executed immediately. As parameters are
identified by keywords they are not required to appear in any particular order. An additional short form
allows to use setup commands on the kernel command line.

Syntax:

setup <setup_item> { <paramlist> }

6.2.1 setup module

The setup module command allows to load additional kernel modules. Module dependencies are resolved
automatically. The module to be loaded has to be present on the system loader ramdisk. Modules can be
added to an existing ramdisk via the kboot_admin tool.

Syntax:

setup module {
name <name>
param <param>
kernelversion <kernelversion>

}

Short form:

mod(<name>[,<param>[,<kernelversion>]]

Example:

setup module {
name qeth

}

6.2.2 setup network

The setup network command allows to specify network settings and to initialize a network device with
these settings. Static setup and dhcp are supported. Parameters for static network setup can also be used
in dhcp mode and are used as fallback if dhcp fails. A correct network setup is required to use network
based URI schemes like ftp, http and scp. A setup module command may be required to load the network
device driver before the setup network command can be executed successfully. The kboot_admin tool
can be used to copy the required driver modules into the ramdisk of the system loader.

Syntax:

setup network {
interface <interface>
mode <dhcp_or_static>
address <address>
mask <mask>
gateway <gateway>
nameserver <nameserver>

}

9

Short form:

static(<interface>[,<address>[,<mask>[,<gateway>[,<nameserver>]]]]
dhcp(<interface>[,<address>[,<mask>[,<gateway>[,<nameserver>]]]]

Example:

setup network {
interface eth0
mode dhcp
address 9.155.23.65
mask 255.255.255.128
gateway 9.155.23.1
nameserver 9.64.163.21

}

6.2.3 setup qeth

On the s390 platform the setup qeth command can be used to enable a qeth ethernet device with the
given busids.

Syntax:

setup qeth {
busid <busid>
busid <busid>
busid <busid>

}

Short form:

qeth(<busid>,<busid>,<busid>)

Example:

setup qeth {
busid 0.0.f5de
busid 0.0.f5df
busid 0.0.f5e0

}

6.2.4 setup dasd

On the s390 platform the setup dasd command can be used to enable a dasd disk device with the given
busid.

Syntax:

setup dasd {
busid <busid>

}

10

Short form:

dasd(<busid>)

Example:

setup dasd {
busid 0.0.5c60

}

6.2.5 setup zfcp

On the s390 platform the setup zfcp command can be used to enable a zfcp disk device.

Syntax:

setup zfcp {
busid <busid>
wwpn <wwpn>
lun <lun>

}

Short form:

zfcp(<busid>,<wwpn>,<lun>)

Example:

setup zfcp {
busid 0.0.54ae
wwpn 0x5005076300cb93cb
lun 0x512e000000000000

}

6.3 System Dependent Sections

Based on the network capabilities of the system loader it is possible to provide kernels, ramdisks and kernel
parameters on a centralized bootserver. System dependent sections in the system loader configuration
file provide a mechanism that is especially useful for shared system loader configuration files. A system
dependent section starts with a test, that determines if the configuration part is active on a specific system.
Depending on the result of this test the following section is used or ignored. The identification of the system
can be done via the MAC address of a network adapter, the UUID of the system, the name of the virtual
machine or the name of the logical partition of the host system. A system dependent section is active if at
least one of the system identifiers matches. If a system identifier is not available on the specific system it
will never match. System dependent sections can be nested in order to specify settings that are common to
a number of systems and to be able to change only some details for the specific system.

Syntax:

system <systemidlist> {
<definitionlist>

}

11

Examples:

system mac(00:10:C6:DE:12:6C)
uuid(C7CCA781-2DD5-11C6-93BC-AD439DC0988B)

{
root block://(/dev/hda5,ext3)/boot/

}
system not(vmguest(linux41)) {

include ftp://kboot:kboot@53v15g41.ibm.com/boot/standard_entries.conf
}
system vmguest(linux40,g53lp15)

vmguest(linux41,g53lp15)
{

setup network {
mode static
vmguest(linux40) {
address 9.152.26.120

}
vmguest(linux41) {
address 9.152.26.121

}
mask 255.255.252.0
gateway 9.152.24.1
nameserver 9.152.120.241
interface eth0

}
}

6.3.1 mac

The mac systemidentifier can be used on nearly every system that has a network adapter. The mac statement
matches if the system has a network adapter with this mac address. It may be necessary to load a kernel
module and to enable the network device before the MAC of the system can be determined. Therefore it is
not the preferred method to identify a system via its mac. Nevertheless it is the only available method for
older machines on the i386 platform.

6.3.2 uuid

On the i386 platform recent BIOS versions provide a UUID that allows to identify the specific system
unambiguously. The uuid command matches when the given UUID matches the UUID of the system. If
available this is the preferred method to identify a specific system on the i386 platform.

6.3.3 lpar

The concept of logical partitions allows to split the hardware of a computer system into several indepen-
dent parts. Each part or logical partition can boot its own operating system. The lpar system identifier
allows to identify the logical partition on which the system loader configuration file is currently used and
matches when the given name matches the name of the current logical partition. In the system loader it is
implemented for the s390 platform. In the future it could be extended to other platforms that offer logical
partitions.

6.3.4 vmguest

The concept of virtual machines is an approach that allows to run several instances of operating systems
under the control of a virtualization software. The vmguest system identifier allows to identify the virtual

12

machine on which a system loader configuration file is currently used. It matches when the given name
matches the name of the virtual machine. An extended form allows to specify the name of a logical partition
in addition and matches when the name of the virtual machine and the name of the logical partition are
identical to the given parameter values. The vmguest system identifier is implemented for VM on the the
s390 platform. In the future it could be extended to other environments that offer virtual machines.

6.4 Boot Entry Definitions

The global definitions are followed by a section of boot entries which describe the available boot configu-
rations. A boot entry starts with the line

boot_entry {

and ends with a closing bracket

}

Every boot entry must contain exactly one statement that triggers a boot action. These boot action state-
ments are kernel, insfile, bootmap, halt, reboot and shell. Other statements can be used optionally.
Some of them will specify labels or variables to improve the handling of the configuration file, some will
influence the behaviour of the boot menu and some will pass additional information to the booted system.
All possible statements inside the boot entry are described in the following sections.

6.4.1 title

The title statement defines a text that will be displayed in the boot selection menu and should give some
meaningful description of the boot configuration. This statement is mandatory for all boot entries.

Example:

title Debian GNU/Linux, latest kernel

6.4.2 label

The label statement allows to assign a symbolic label to a boot entry. This label can be used in the default
statement to reference the default boot entry (see section 6.1.2). If no label definition is present the boot
entry can still be referenced numerically by its position in the configuration file.

Example:

label linux3

6.4.3 root

The root statement defines an URI path prefix and will be prepended to all URIs2 specified in the same
boot entry. Typically it is used to specify a common path for kernel, initrd and parmfile. Note that the path
prefix and the rest of the URI will be concatenated as they are specified. There is no automatic insertion of
a ’/’ character and no syntax checking.

Example:

root dasd://(0.0.5c5e,1)/boot/
2The root definition will not be applied to bootmap URIs because a path definition makes no sense for a structure that is not part

of any filesystem.

13

6.4.4 kernel

The kernel statement specifies the kernel file that will be booted if this boot entry is selected. All supported
URI formats are allowed to specify the location of the kernel file. If a root statement is given in the same
boot entry, it will be prepended to the specified kernel path.

Example:

kernel vmlinuz

6.4.5 initrd

The initrd statement specifies the initial ramdisk that will be used if this boot entry is selected. All
supported URI formats are allowed to specify the location of the ramdisk file. If a root statement is given
in the same boot entry, it will be prepended to the specified ramdisk path.

Example:

initrd initrd.img

6.4.6 cmdline

The cmdline statement specifies the kernel commandline that is used to start the kernel if this boot entry is
selected.

Example:

cmdline ro root=/dev/ram0 ramdisk_size=100000

6.4.7 parmfile

As an alternative to the cmdline statement the parmfile statement can be used to specify the file that
will be used as the kernel command line if this boot entry is selected. All supported URI formats are
allowed to specify the location of the parmfile. If a root statement is given in the same boot entry, it will be
prepended to the specified parmfile path. If parmfile and cmdline are specified at the same time they will
be concatenated as parmfile + ’ ’ + cmdline .

Example:

parmfile parmfile.txt

6.4.8 lock

The lock command allows to have password protected boot entries. If a locked boot entry is selected the
user has to enter the password specified in the password statement (see section 6.1.4) to execute this boot
selection entry.

Example:

lock

14

6.4.9 pause

The pause statement displays a message and waits for user input before the boot entry will be started. This
can be used to ask the user to prepare the system for booting (e.g. by inserting a boot CD to the CD drive).

Example:

pause Please insert your boot floppy!

6.4.10 insfile

The insfile statement can be used as an alternative method to specify a boot configuration. An *.ins file
contains the definitions of a kernel, initial ramdisk and parmfile, therefore it makes no sense to specify
these components . The insfile statement is only available on the s390 platform and is provided with
several Linux distributions for this platform.

Example:

insfile dasd://(0.0.5c5e,1)/usr/local/insfile_test/redhat/generic.ins

6.4.11 bootmap

The bootmap command can be used as an alternative method to specify a boot configuration. It is only
available on the s390 platform and boots the system using the boot information from the boot map of the
specified disk. This boot information is written by the tool zipl. Only bootmaps in the format created
by zipl version 1.2 or newer are supported. The bootmap command uses a modified URI format that is
described in section 6.5.8 and 6.5.9.

Example:

bootmap dasd://(0.0.5e2a,0)

6.4.12 halt

The halt statement can be used instead of a real boot selection. It will halt the Linux environment of the
system loader.

6.4.13 reboot

The reboot statement can be used instead of a real boot selection. This statement will reboot the system.
If a first stage bootloader is installed the system will be restarted via this bootloader.

6.4.14 shell

The shell statement can be used instead of a real boot selection. If the resulting boot entry is selected, the
user will get a shell prompt. Leaving the shell prompt via exit will redisplay the boot selection menu.

6.5 URI Definitions

URIs provide a generic mechanism to describe the location of files. They are used by the system loader to
locate boot and configuration files. The following sections describe the supported URI schemes in detail.

15

6.5.1 block

The block URI can be used to reference a file on any block device containing a supported filesystem. This
is the typical method to access the boot files on the i386 platform and on other non s390 platforms. If no
filesystem type is specified, the filesystem type will be autodetected.

Syntax:

block://(<device node>[,<filesystem type>])/<path to file>

Example:

block://(/dev/hda5,ext3)/boot/vmlinuz

6.5.2 ftp

The ftp URI can be used to reference a file on a ftp-server. This URI type is available on all platforms but
requires a network connection. If the remote server requires a UID and a password, it has to be provided the
usual way (see the example below). In case the UID contains the “@” , as it happens in e-mail addresses,
it has to be replaced with “%40” to avoid any misunderstanding with the separator between the UID:PW
combination and the host-name.

Syntax:

ftp://[UID[:PW]@]hostname[:PORT]/<path to file>

Example:

ftp://my_name%40ibm.com:my_secret@ftp.server.com/boot/vmlinuz

6.5.3 http

The http URI can be used to reference a file on a http-server. This URI type is available on all platforms
but requires a network connection. If the remote server requires a UID and a password, it has to be provided
like for the 6.5.2ftp URI (see example below). In case the UID contains the “@” , as it happens in e-mail
addresses, it has to be replaced with “%40” to avoid any misunderstanding with the separator between the
UID:PW combination and the host-name.

Syntax:

http://[UID[:PW]@]hostname[:PORT]/<path to file>

Example:

http://my_name%40ibm.com:my_secret@http.server.com/boot/vmlinuz

16

6.5.4 scp

The scp URI can be used to reference a file on a server which is accessible via the SSH protocol. As with
the 6.5.2 ftp- and the 6.5.3 http-URI the scp-URI is available on all platforms but requires a network con-
nection. The encoding of a UID and a password is identical to the above described protocols (see example
below). In case the UID contains the “@” , as it happens in e-mail addresses, it has to be replaced with
“%40” to avoid any misunderstanding with the separator between the UID:PW combination and the host-
name. Beside the UID:PW combination, encoded in the URI, the public key authentication is supported as
well. Therefor the local public key has to be part of the servers authorized_keys file and the public key
authentication has to be enabled on the server.

Syntax:

scp://[UID[:PW]@]hostname[:PORT]/<path to file>

Example:

scp://my_name%40ibm.com:my_secret@ssh.server.com/boot/vmlinuz

6.5.5 file

The file URI can be used to reference files on an already mounted filesystem. This type of URI is available
on all platforms. In an unmodified system loader boot environment it can only be used to reference files on
the initial ramdisk. If the system loader is running as a program on an already booted Linux system it can
be used instead of the other URIs.

Example:

file:///boot/vmlinuz

6.5.6 dasd

The dasd URI can be used to reference files on zSeries ESCON/FICON attached storage. This type of
URI is only available on the s390 platform. If no filesystem type is specified, the filesystem type will be
autodetected.

Syntax:

dasd://(<bus id>,[<partition>[,<filesystem type>]])/<path to file>

Example:

dasd://(0.0.5c5e,1)/usr/local/insfile_test/SuSE/suse.ins

6.5.7 zfcp

The zfcp URI can be used to reference files on s390 (zSeries) FCP attached storage. This type of URI is only
available on the s390 platform. If no filesystem type is specified, the filesystem type will be autodetected.

Syntax:

zfcp://(<bus id>,<WWPN>,<LUN>,[<partition>[,<filesystem type>]])/<path to file>

Example:

zfcp://(0.0.54e0,0x5005076303000104,0x4011400500000000,1)/boot/initrd.img

17

6.5.8 dasd URI for the bootmap command

Because the bootmap information is not stored inside a file system the bootmap command (see section
6.4.11) uses a reduced form of the dasd URI.

Syntax:

dasd://(<bus id>[,<program number>])

Example:

dasd://(0.0.5e89,1)

6.5.9 zfcp URI for the bootmap command

Because the bootmap information is not stored inside a file system the bootmap command (see section
6.4.11) uses a reduced form of the zfcp URI.

Syntax:

zfcp://(<bus id>,<WWPN>,<LUN>[,<program number>])

Example:

zfcp://(0.0.04ae,0x500507630e01fca2,0x4010404500000000,2)

7 Using the Command Line Interface

The command line interface is the basic user interface of the system loader. It is designed to run on all
platforms and without any special requirements regarding the capabilities of the user interface device.
Therefore it will be usable on line mode interfaces like the 3270 terminal on the s390 platform or via a
serial line on typical open systems platforms.

The command line interface displays the title information from all boot entries found in the system loader
configuration file. The default entry is marked by an arrow symbol ->, locked entries are displayed in
brackets [].

kboot user interface is starting.
Configuration file source: file:///boot/boot_menu.config

Welcome to kboot!
The following boot options are available:
-> 1 latest kernel from DASD

2 latest kernel from EVMS (matching system)
3 rescue kernel from DASD
4 kboot (development version)
5 Linux 2.6.13-14.x from FCP disk
6 System Reboot
7 System Halt
8 start a shell!
d<n> Display boot parameters of the selected entry
m<n> Modify and boot selected entry
i Enter boot parameters interactively

Please enter your selection:

18

The selection of a specific entry is done by entering its number. If the menu is not completely visible it
can be redisplayed by entering an empty input. If a timeout occurs while one or more user interfaces are
waiting for input, all user interfaces will be terminated and the default entry will be executed. If a timeout is
defined it will be displayed by the user interface. In addition to the selection of predefined menu entries the
user interface allows to display existing boot entries, to modify them or to enter new entries from scratch.

Entering the boot entry number with prefix d will display the associated boot entry like shown in the
following example.

d2

*** BOOT ENTRY PRINTOUT ***
title latest kernel from EVMS (matching system)
label evms
root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz
cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
action KERNEL_BOOT
*** Press RETURN to continue ***

With prefix m the boot entry will first be displayed completely and will then be offered line by line to allow
the input of modified lines. Empty user input will leave the respective line unchanged. The modified boot
entry will be displayed again and can be booted finally.

m2

*** BOOT ENTRY PRINTOUT ***
title latest kernel from EVMS (matching system)
label evms
root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz
cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
action KERNEL_BOOT

*** Please enter the new values for each line ***
*** or hit ENTER to leave it unchanged. ***
root
kernel vmlinuz.rescue
initrd
cmdline
parmfile

*** BOOT ENTRY PRINTOUT ***
root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz.rescue
cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
action KERNEL_BOOT

*** Press ’B’ to boot this entry or any other key to cancel ***

The i command allows to enter a boot entry interactively from scratch in cases where no similar entry is
already present in the boot selection menu.

i

*** Please enter the values for manual boot***
ACTION => 1->KERNEL_BOOT 2->INSFILE_BOOT 3->BOOTMAP_BOOT
action 1
root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz.rescue
initrd

19

cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
parmfile

*** BOOT ENTRY PRINTOUT ***
root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz.rescue
cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
action KERNEL_BOOT

*** Press ’B’ to boot this entry or any other key to cancel ***

8 The kboot_admin Tool

The administration tool was created to modify a ramfs to suite all environment and user requirements while
running the minimal system contained within the ramfs. The functionality includes the support to add any
executable, library or module to the ramfs. In addition all dependencies are detected and resolved by adding
those files to the ramfs as well.

E.g. if an added executable is dynamically linked and has therefor certain library dependencies, this will
be detected and the required libraries will be copied to the ramfs.

The same applies for library (e.g. library_a requires library_b) and module (mod_a requires mod_b) de-
pendencies. If modules are added to the ramfs the required modules.dep file is generated in the appropriate
location.

The second field of application is to merge two ramfs files into one. This might be the case if a special
utility ramfs exists and the extra features of this ramfs should be added to the default initial ramfs of a
distribution (e.g.: merge the kboot ramfs with SuSEs initrd). The resulting ramfs contains all files from
both sources whereas the content of the master ramfs, usually the distribution ramfs, takes precedence.

In addition the tool can be used to change the super-users password within the ramfs. This functionality is
primarily used when the ramfs is supporting remote-access while running the minimal system.

The individual settings of the admin tool are configured through a configuration file which can be specified
by the ’-c <file>’ command-line parameter. The default is /etc/kboot_admin.conf.

On first program initiation the configuration file is created automatically with default values for all settings.

GZIP /usr/bin/gzip
FIND /usr/bin/find
CPIO /usr/bin/cpio
CUT /usr/bin/cut
RSYNC /usr/bin/rsync
GET_K_VERS /sbin/get_kernel_version
MASTER_RAMFS /boot/initrd
KBOOT_RAMFS /boot/kboot-root-glibc.cpio.gz
IMAGE_RAMFS /boot/initrd-kboot.cpio.gz
TEMP_DIR /tmp/KBOOT
############### the module dependent part ##################
KERNEL /boot/vmlinuz
MODULE e100
MODULE reiserfs
############### executables and libraries ##################
EXEC uname
EXEC losetup
EXEC ldd
LIBRARY /lib/libpam_misc.so.0

These settings have to be modified manually to map the local requirements.

In addition the admin tool supports the following options and commands.

20

Commands:
merge join content from -s <ramfs> and -m <ramfs> to -o <ramfs>
passwd change password for super-user ID in -m <ramfs>
add add executables, libraries and/or modules to the ramfs

Options:
-h|--help this help text
-v|--version print version information
-c|--config <file> configuration file name (default /etc/kboot_admin.conf)
-m|--master <file> master ramfs superseding other ramfs’ content.
-s|--secondary <file> second ramfs which is merged with the master ramfs.
-o|--output <file> file name for the resulting ramfs image
-k|--kernel <file> kernel file name
-l|--lib <file> add DLL(s) <file,...> to ramfs (full qualified path)
-m|--module <module> add module(s) <module,...> to ramfs (e.g. qeth)
-x|--executable <file> add executable <file,...> to ramfs (e.g. losetup)

Notice: if one or more of the command-line switches -l, -m, -x are used, none of the configured file
values are used for libraries, modules and executables. This means that either the configuration file or the
command line is used to reference the files which are to be added to the ramfs.

To describe the admin tool’s functionality best, verify the following examples:

1. merge two ramfs files into one and use all the settings provided by the configuration file test.conf .

admin_tool merge

2. add the executables ldd and /home/frank/my_exec to the ramfs /boot/my_initrd and store the resulting
ramfs in the default file.

admin_tool -m /boot/my_initrd -x ldd,/home/frank/my_exec add

3. add all executables, libraries and modules specified in the configuration file /home/frank/my.conf and
store the resulting ramfs in /home/frank/my_initrd.new .

admin_tool -f /home/frank/my.conf -o /home/frank/my_initrd.new add

4. change the super-users password in the ramfs /boot/my_initrd and store the resulting ramfs in the
same file.

admin_tool -m /boot/my_initrd -o /boot/my_initrd passwd

9 Using Online Documentation

Man pages are available for the kboot executable and for the system loader configuration file kboot.conf.
These man pages are meant as a short overview and refer to this specification and to the system loader
design document for a detailed description of this software.

10 Extending the System Loader

The system loader is designed to be extensible. The extension can be done without changing the code of the
existing components. User provided loader modules can provide support for additional URI schemes (e.g.
nfs, smb). Additional user interface modules can provide more comfortable user interfaces (e.g. graphical
or web-based).

21

A Examples

A.1 menu.lst to Start the System Loader via grub

This example shows how the system loader can be booted on the i386 platform using grub as the first stage
boot loader. Relevant for the system loader is the kboot= parameter in the kernel command line which
references the system loader configuration file. Without this parameter the unmodified kboot variant as
provided by Werner Almesberger will be started. The quiet parameter minimizes the screen output while
the system loader environment is started.

default num
Set the default entry to the entry number NUM. Numbering starts from 0, and
the entry number 0 is the default if the command is not used.
default 1

timeout sec
Set a timeout, in SEC seconds, before automatically booting the default entry
(normally the first entry defined).
timeout 5

Pretty colours
color cyan/blue white/blue
gfxmenu (hd0,4)/boot/message

title Debian GNU/Linux, kernel
root (hd0,4)
kernel /boot/vmlinuz root=/dev/hda5 ro
initrd /boot/initrd.img
boot

title kboot system loader environment
root (hd0,4)
kernel /boot/vmlinuz ro quiet root=/dev/ram0 kboot=block://(/dev/hda5,ext3)/boot/boot_menu.config
initrd /boot/kboot-root-glibc.cpio.gz
boot

A.2 Simple kboot.conf for i386

The following example shows a simple system loader configuration for the i386 platform. Two userinter-
face instances are started to listen on two different devices simultaneously.

#
This is a sample config file for kilo
#

default linux1
timeout 0
password secret

userinterface linemode /dev/tty1
userinterface linemode /dev/tty

boot_entry {
title Debian GNU/Linux, latest kernel
label linux1

root block://(/dev/hda5,ext3)/boot/
kernel vmlinuz
initrd initrd.img
cmdline root=/dev/hda5 ro ramdisk_size=100000 lang=de apm=power-off nomce lapic vga=normal

}

boot_entry {
title Debian GNU/Linux, rescue kernel
label linux2

root block://(/dev/hda5,ext3)/boot/
kernel vmlinuz-2.6.11-kanotix-7
initrd initrd.img-2.6.11-kanotix-7
cmdline root=/dev/hda5 ro ramdisk_size=100000 lang=de apm=power-off nomce vga=0x317

22

}

boot_entry {
title Debian GNU/Linux, rescue kernel (locked)
label linux3

lock
root block://(/dev/hda5,ext3)/boot/
kernel vmlinuz-2.6.11-kanotix-7
initrd initrd.img-2.6.11-kanotix-7
cmdline root=/dev/hda5 ro ramdisk_size=100000 lang=de apm=power-off nomce vga=0x317

}

boot_entry {
title kboot environment
label kboot

root block://(/dev/hda5,ext3)/boot/
kernel vmlinuz
initrd kboot-root-glibc.cpio.gz
cmdline root=/dev/hda5 ro ramdisk_size=100000 lang=de apm=power-off nomce lapic vga=normal

}

boot_entry {
title System Reboot
label reboot

reboot
}

boot_entry {
title System Halt

halt
}

A.3 An Example Using Advanced Configuration Features

The following example shows how the same system loader configuration files can be used on two different
systems. The platform for the examples is s390 which gets the boot configuration of the first stage boot
loader in the file zipl.conf. Both systems share the same configuration files.

A.3.1 zipl.conf on System 1

System 1 is a virtual machine called linux41. The configuration for the first stage bootloader zipl ref-
erences a file parmfile_linux41.kboot which contains the kernel commandline that is used to boot the
initial system loader linux environment.

This is an expample zipl.conf file
[defaultboot]
default = kboot
[kboot]
target = "/home/kboot/boot"
image = "/home/kboot/boot/s390/vmlinuz"
ramdisk = "/home/kboot/boot/s390/initrd_sl2"
parmfile = "/home/kboot/boot/s390/parmfile_linux41.kboot"

The kernel command line in parmfile_linux41.kboot contains the parameter quiet to suppress unnec-
essary messages while the system loader is booted. The second parameter references the system loader
configuration file kboot.conf (shown in A.3.3 on the following page) on a disk of the virtual machine.
Note that on the i386 platform usually the block URI scheme would be used instead of the dasd URI
scheme.

quiet kboot=dasd://(0.0.5c60,1)/home/kboot/boot/s390/kboot.conf

23

A.3.2 zipl.conf on System 2

System 2 is another virtual machine called linux40. This machine has a kernel and the initial ramdisk
of the system loader installed locally but gets the boot configuration via the network from system 1. The
initial setup of the network interface is done via the kset= parameter on the kernel commandline. The
kboot= parameter references the boot configuration via ftp.

This is an expample zipl.conf file
[defaultboot]
default = kboot
[kboot]
target = "/boot"
image = "/boot/vmlinuz-2.6.16.18"
ramdisk = "/boot/initrd_sl2"
parameters = "quiet

kset=mod(qeth),qeth(0.0.f5db,0.0.f5dc,0.0.f5dd),static(eth0,9.152.26.120,255.255.252.0,9.152.24.1,9.152.120.241)
kboot=ftp://kboot:kboot@53v15g41.boeblingen.de.ibm.com/home/kboot/boot/s390/kboot.conf"

A.3.3 System Loader Configuration Used by Both Systems

The following system loader configuration is used by both systems and shows various examples for system
dependent definitions, device setup and included configuration parts and how these capabilities can be
combined.

#
My first system loader config file
#

default linux1
timeout 600

#
define userinterfaces to be started
1. start a linemode ui on /dev/console
2. start a second linemode interface for incoming ssh connections
#

userinterface linemode /dev/console
userinterface ssh linemode

#
device setup
#

enable two fcp devices on the vmguest named ’linux40’

system vmguest(linux40) {

setup zfcp {
busid 0.0.54ae
wwpn 0x5005076300cb93cb
lun 0x512e000000000000

}

setup zfcp {
busid 0.0.54ae
wwpn 0x5005076300cb93cb
lun 0x512f000000000000

}
}

load the qeth kernel module and enable a qeth device
on the vmguest ’linux41’ on lpar ’g53lp15’

system vmguest(linux41,g53lp15) {

setup module {
name qeth

}

setup qeth {
busid 0.0.f5de

24

busid 0.0.f5df
busid 0.0.f5e0

}
}

#
network setup ’linux41’ only
setup for other systems is done via the kernel command line
#

system vmguest(linux41,g53lp15) {

setup network {
mode static
address 9.152.26.121
mask 255.255.252.0
gateway 9.152.24.1
nameserver 9.152.120.241
interface eth0

}
}

#
here we have the entries for the boot menu
#

boot_entry {
title latest kernel from DASD
label linux1

system vmguest(linux41) {
root dasd://(0.0.5c60,1)/home/kboot/boot/s390/

}

system not(vmguest(linux41)) {
root ftp://kboot:kboot@53v15g41.boeblingen.de.ibm.com/home/kboot/boot/s390/

}

kernel vmlinuz

system vmguest(linux40) {
cmdline dasd=5c5e-5c5f root=/dev/dasda1 ro noinitrd selinux=0

}

system vmguest(linux41) {
cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0

}
}

system vmguest(linux40) {

boot_entry {
title latest kernel from EVMS
label evms

root block://(/dev/evms/evmsvol)/boot/
kernel vmlinuz
cmdline dasd=5c5e-5c5f root=/dev/dasda1 ro noinitrd selinux=0

}
}

boot_entry {
title rescue kernel from DASD
label rescue

system vmguest(linux41) {
root dasd://(0.0.5c60,1)/home/kboot/boot/s390/

}

system not(vmguest(linux41)) {
root ftp://kboot:kboot@53v15g41.boeblingen.de.ibm.com/home/kboot/boot/s390/

}

kernel vmlinuz.rescue

system vmguest(linux40) {
cmdline dasd=5c5e-5c5f root=/dev/dasda1 ro noinitrd selinux=0

}

system vmguest(linux41) {

25

cmdline dasd=5c60-5c61 root=/dev/dasda1 ro noinitrd selinux=0
}

}

system vmguest(linux41) {
include dasd://(0.0.5c60,1)/home/kboot/boot/s390/standard_entries.conf

}

system not(vmguest(linux41)) {
include ftp://kboot:kboot@53v15g41.boeblingen.de.ibm.com/home/kboot/boot/s390/standard_entries.conf

}

To show the include mechanism the definition of the generic boot entries reboot, halt and shell is done
via the following include file:

boot_entry {
title System Reboot
label reboot

reboot
}

boot_entry {
title System Halt

halt
}

boot_entry {
title start a shell!

shell
}

26

	Overview
	Description
	Building system loader executables
	The kboot Build Environment
	RPM Package Build
	System Loader Standalone Build

	Installation
	Boot Methods
	Elements of the Config File
	Global Definitions
	Comments
	default
	timeout
	password
	userinterface
	userinterface linemode
	userinterface ssh
	include

	Setup Commands
	setup module
	setup network
	setup qeth
	setup dasd
	setup zfcp

	System Dependent Sections
	mac
	uuid
	lpar
	vmguest

	Boot Entry Definitions
	title
	label
	root
	kernel
	initrd
	cmdline
	parmfile
	lock
	pause
	insfile
	bootmap
	halt
	reboot
	shell

	URI Definitions
	block
	ftp
	http
	scp
	file
	dasd
	zfcp
	dasd URI for the bootmap command
	zfcp URI for the bootmap command

	Using the Command Line Interface
	The kboot_admin Tool
	Using Online Documentation
	Extending the System Loader
	Examples
	menu.lst to Start the System Loader via grub
	Simple kboot.conf for i386
	An Example Using Advanced Configuration Features
	zipl.conf on System 1
	zipl.conf on System 2
	System Loader Configuration Used by Both Systems

